
Appearance-Driven Automatic 3D
Model Simplification

Appearance-Driven Automatic 3D
Model Simplification

The Goal

???
Reference Initial guess Something happens Optimized mesh!

Find the shape and appearance that match as much as possible the reference scene

AKA : Inverse rendering! (big study area)

(can be an image)

One approach to solve multiple problems

● Geometric simplification

● Joint shape-appearance simplification

● Simplification of aggregate geometry

● Animation

● Conversion between rendering systems

● Conversion between shape representations

Inverse rendering applied to…

One approach to solve multiple problems

● Geometric simplification : Optimizing for the shape of a lower-resolution
mesh

● Joint shape-appearance simplification : optimizing normal maps

● Simplification of aggregate geometry : optimizing foliage

● Animation : optimizing skinning weights

● Conversion between rendering systems : Optimizing the scene
representation to match images rendered by an entirely different system

● Conversion between shape representations : Finding a mesh geometry
and associated appearance model that captures the appearance of objects
given by other shape representations, such as signed distance fields (SDF)

Inverse rendering applied to…

One approach to solve multiple problems

● Geometric simplification

● Joint shape-appearance simplification

● Simplification of aggregate geometry

● Animation

● Conversion between rendering systems

● Conversion between shape representations

Inverse rendering applied to…

But how?

Differentiable Rendering

Difference!

Differentiable Rendering

Differentiable Rendering

Differentiable Rendering

p = color (r,g,b)
L = light function (like phong)

Differentiable Rendering

How did they do it?

?

?

?

= hundreds of images!

Iref(c,l)

c = camera
l = light

Takes a mesh for input!

How did they do it?

θ = parameters
Vertex positions,
Material properties, etc

Iref(c,l)

c = camera
l = light

How did they do it?

Iref(c,l)

c = camera
l = light

Iθ(c,l,θ)

c = camera
l = light
θ = parametersVS

How did they do it?

Iref(c,l)

c = camera
l = light

Iθ(c,l,θ)

c = camera
l = light
θ = parameters

We want to minimise “image space loss” : L

https://en.wikipedia.org/wiki/Loss_function

How did they do it?

Iref(c,l)

c = camera
l = light

Iθ(c,l,θ)

c = camera
l = light
θ = parameters

We want to minimise “image space loss” : L

Solves using gradient descent

Laplacian Mesh processing

2005 classic paper
from medieval times

https://people.eecs.berkeley.edu/~jrs/meshpapers/Sorkine.pdfhttps://www.sciencedirect.com/science/article/abs/pii/S0167839618300815

Simplifying a mesh using differentiable rendering

Differentiable renderer

Optimize with parameters :
● vertex position
● tangent space normal maps (used for rendering light)

Simplifying a mesh using differentiable rendering

Differentiable renderer

Optimize with parameters :
● vertex position
● tangent space normal maps (used for rendering light)735k Triangles 3k Triangles

Simplifying a mesh using differentiable rendering

Differentiable renderer

Optimize with parameters :
● vertex position
● tangent space normal maps (used for rendering light)

100% = 0.4% 100% = 0.4%
3k3k

735k735k

735k Triangles 3k Triangles

Conclusion Conclusion

	Slide 1
	The Goal
	One approach to solve multiple problems
	One approach to solve multiple problems
	One approach to solve multiple problems
	But how?
	Differentiable Rendering
	Differentiable Rendering
	Differentiable Rendering
	Differentiable Rendering
	Differentiable Rendering
	How did they do it?
	How did they do it?
	How did they do it?
	How did they do it?
	How did they do it?
	Laplacian Mesh processing
	Simplifying a mesh using differentiable rendering
	Simplifying a mesh using differentiable rendering
	Simplifying a mesh using differentiable rendering
	Slide 21
	Slide 22

