Appearance-Driven Automatic 3D Model Simplification

Our: 20M tris

The Goal

Find the shape and appearance that match as much as possible the reference scene

AKA : Inverse rendering! (big study area)

One approach to solve multiple problems

Inverse rendering applied to...

- Geometric simplification
- Joint shape-appearance simplification
- Simplification of aggregate geometry
- Animation
- Conversion between rendering systems
- Conversion between shape representations

One approach to solve multiple problems

Inverse rendering applied to...

- Geometric simplification : Optimizing for the shape of a lower-resolution mesh
- Joint shape-appearance simplification : optimizing normal maps
- Simplification of aggregate geometry : optimizing foliage
- Animation : optimizing skinning weights
- Conversion between rendering systems : Optimizing the scene representation to match images rendered by an entirely different system
- Conversion between shape representations : Finding a mesh geometry and associated appearance model that captures the appearance of objects given by other shape representations, such as signed distance fields (SDF)

One approach to solve multiple problems

Inverse rendering applied to...

- Geometric simplification
- Joint shape-appearance simplification
- Simplification of aggregate geometry
- Animation
- Conversion between rendering systems
- Conversion between shape representations

But how?

Difference!

l = light

https://en.wikipedia.org/wiki/Loss_function

Laplacian Mesh processing

O. Sorkine / Laplacian Mesh Processing

2005 classic paper from medieval times

Figure 7: Reconstruction of the Feline model using an increasing number of geometry-aware basis vectors. The sizes of the encoded geometry files are displayed below the models. The letter e denotes the L^2 error value, given in units of 10^{-4} .

Property	Harm.	Hamil.	Lapl.	Lapl. compr.	Hamil.	Spectral	Diff.
	basis	basis	eigenf.	modes	eigenf.	basis	basis
Partition of unity	\otimes	\otimes	\otimes	\otimes	\otimes	\otimes	\otimes
Non-negativity	•	0	0	0	0	0	•
Intrinsic def.	•	•	•	•	•	•	•
Locality	0	0	0	•	0	\otimes	\otimes
Orthogonality	\otimes	\otimes	•	•	•	\otimes	\otimes
Isometry-inv.	•	0	•	•	0	•	•
Numer. stability	•	•	\otimes	\otimes	•	•	•
Comput. cost $\mathcal{O}(\cdot)$	n	n	kn log n	kn log n	kn log n	rn log n	rn log n
Storage overhead $\mathcal{O}(\cdot)$	n	n	kn ²	kn	kn ²	n	п

https://people.eecs.berkeley.edu/~jrs/meshpapers/Sorkine.pdf

Simplifying a mesh using differentiable rendering

Simplifying a mesh using differentiable rendering

735k Triangles

3k Triangles

Simplifying a mesh using differentiable rendering

Conclusion

Our: 20M tris

Ref: 5.1B tris